					LDR I	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	1	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/L	Limit	Code	in mg/l	in mg/kg	Comments
		UHC Treatment				1 mg/L detection limits exceed the
Acenaphthene	U (1)	Standard	UHC	0.059	3.4	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Acenaphthylene	U (1)	Standard	UHC	0.059	3.4	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Anthracene	U (1)	Standard	UHC	0.059	3.4	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Benzo (a) anthracene	U (1)	Standard	UHC	0.059	3.4	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Benzo (a) pyrene	U (1)	Standard	UHC	0.061	3.4	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Benzo (b) fluoranthene	U (1)	Standard	UHC	0.11	6.8	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Benzo (g,h,I) perylene	U (1)	Standard	UHC	0.0055	1.8	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Benzo (k) fluoranthene	U (1)	Standard	UHC	0.11	6.8	wastewater treatment standard.
Benzoic acid	U (5)	None	NA	NA	NA	
Benzyl alcohol	U (1)	None	NA	NA	NA	
		UHC Treatment				1 mg/L detection limits exceed the
Butylbenzylphthalate	U (1)	Standard	UHC	0.017	28	wastewater treatment standard.
Bis (2-		UHC Treatment				1 mg/L detection limits exceed the
chloroethoxy)methane	U (1)	Standard	UHC	0.036	7.2	wastewater treatment standard.
		UHC Treatment		-		1 mg/L detection limits exceed the
Bis (2-chloroethyl)ether	U (1)	Standard	UHC	0.033	6	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Bis (2-chloroisopropyl) ether	U (1)	Standard	UHC	0.055	7.2	wastewater treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

90 \$172

				l	LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for		
1	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	,
Constituents	mg/L	Limit	Code	in mg/l	in mg/kg	Comments
Constituents	IIIg/L	UHC Treatment	Oode	in mg/i	iii iiig/kg	Concentration is below both treatment
Bis (2-ethylhexyl) phthalate	0.1 J	Standard	UHC	0.28	28	standards, therefore it is not a UHC.
Dis (2 curymexyr) primalate	0.10	UHC Treatment	0110	0.20	20	1 mg/L detection limits exceed the
4-Bromophenyl-phenylether	U (1)	Standard	UHC	0.055	15	wastewater treatment standard.
Carbozole (or Carbazole)	U (1)	None	NA NA	NA	NA NA	wastewater troutment standard.
Curbozoic (cr Curbazoic)	3(1)	UHC Treatment	1471	14/	14/	1 mg/L detection limits exceed the
Chrysene	U (1)	Standard	UHC	0.059	3.4	wastewater treatment standard.
4-Chloroaniline (p-	J (1)	UHC Treatment	0110	0.000	0.4	1 mg/L detection limits exceed the
chloroaniline)	U (1)	Standard	UHC	0.46	16	wastewater treatment standard.
4-Chloro-3-Methylphenol (p-	3(1)	UHC Treatment	0110	0.40	- ' -	1 mg/L detection limits exceed the
chloro-m-cresol)	U (1)	Standard	UHC	0.018	14	wastewater treatment standard.
Gride in Green	3 (1)	UHC Treatment	0110	0.0.0	1	1 mg/L detection limits exceed the
2-Chloronaphthalene	U (1)	Standard	UHC	0.055	5.6	wastewater treatment standard.
2 0111010110110110	• (1)	Otal Idai d	<u> </u>	0.000	0.0	materials, it dainers startaged.
4-Chlorophenyl-phenylether	U (1)	None	NA	NA	NA	
		UHC Treatment				1 mg/L detection limits exceed the
2-Chlorophenol	U (1)	Standard	UHC	0.044	5.7	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Dibenz(a,h)anthracene	U (1)	Standard	UHC	0.055	8.2	wastewater treatment standard.
Dibenzofuran	U (1)	None	NA	NA	NA	
1,2-Dichlorobenzene (o-		UHC Treatment				1 mg/L detection limits exceed the
dichlorobenzene)	U (1)	Standard	UHC	0.088	6	wastewater treatment standard.
1,3-Dichlorobenzene (m-		UHC Treatment				1 mg/L detection limits exceed the
dichlorobenzene)	U (1)	Standard	UHC	0.036	6	wastewater treatment standard.
		7.5 (D027), UHC				
1,4-Dichlorobenzene (p-		Treatment				1 mg/L detection limits exceed the
dichlorobenzene)	U (1)	Standard	D027, UHC	0.09	6	wastewater treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

					LDR	
				LDR	Treatment	
				Treatment	Standard for	<u>.</u>
		Applicable	Applicable	Standard for	l non- l	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/L	Limit	Code	in mg/l	in mg/kg	Comments
3,3-Dichlorobenzidine		UHC Treatment				1 mg/L detection limits exceed the
(Dibenz (a,h) anthracene)	U (1)	Standard	UHC	0.055	8.2	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
2,4-Dichlorophenol	U (1)	Standard	UHC	0.044	14	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Diethylphthalate	U (1)	Standard	UHC	0.2	28	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
2,4-Dimethylphenol	U (1)	Standard	UHC	0.036	14	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Dimethylphthalate	U (1)	Standard	UHC	0.047	28	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Di-n-butylphthalate	U (1)	Standard	UHC	0.057	28	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Di-n-octylphthalate	U (1)	Standard	UHC	0.017	28	wastewater treatment standard.
4,6-Dinitro-2-methylphenol	U (5)	None	NA	NA	NA	
		UHC Treatment			1	5 mg/L detection limits exceed the
2,4-Dinitrophenol	U (5)	Standard	UHC	0.12	160	wastewater treatment standard.
		0.13 mg/L			:	
		(D030), UHC				
		Treatment				1 mg/L detection limits exceed the
2,4-Dinitrotoluene	U (1)	Standard	D030, UHC	0.32	140	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
2,6-Dinitrotoluene	U (1)	Standard	UHC	0.55	28	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Fluoranthene	U (1)	Standard	UHC	0.068	3.4	wastewater treatment standard.
		UHC Treatment			_	1 mg/L detection limits exceed the
Fluorene	U (1)	Standard	UHC	0.059	3.4	wastewater treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

					LDR	· · · · · · · · · · · · · · · · · · ·
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	non-	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/L	Limit	Code	in mg/l	in mg/kg	Comments
		0.13 (D032),				
		UHC Treatment				1 mg/L detection limits exceed the
Hexachlorobenzene	U (1)	Standard	D032, UHC	0.055	10	wastewater treatment standard.
		0.5 (D033)UHC				
Hexachlorobutadiene		Treatment				1 mg/L detection limits exceed the
(Hexachloro-1,3-butadiene	U (1)	Standard	D033, UHC	0.055	5.6	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Hexachlorocyclopentadiene	U (1)	Standard	UHC	0.057	2.4	wastewater treatment standard.
		3.0 mg/L (D034),				
		UHC Treatment				1 mg/L detection limits exceed the
Hexachloroethane	U (1)	Standard	D034, UHC	0.055	30	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Indeno (1,2,3-cd) pyrene	U (1)	Standard	UHC	0.0055	3.4	wastewater treatment standard.
Isophorone	U (1)	None	NA	NA	NA	
2-Methylnaphthalene	U (1)	None	NA	NA	NA	
		200 mg/L, UHC				
		Treatment				1 mg/L detection limits exceed the
2-Methylphenol (o-cresol)	U (1)	Standard	D023, UHC	0.11	5.6	wastewater treatment standard.
		200 mg/L, UHC				
		Treatment				1 mg/L detection limits exceed the
4-Methylphenol (p-cresol)	U (1)	Standard	D025, UHC	0.77	5.6	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
Naphthalene	U (1)	Standard	UHC	0.059	5.6	wastewater treatment standard.
		UHC Treatment				5 mg/L detection limits exceed the
2-Nitroaniline (o-nitroaniline)	U (5)	Standard	UHC	0.27	14	wastewater treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

					LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	non-	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/L	Limit	Code	in mg/l	in mg/kg	Comments
3-Nitroaniline (m-						
nitroaniline)	U (5)	None	NA	NA	NA	
		UHC Treatment				5 mg/L detection limits exceed the
4-Nitroaniline (p-nitroaniline)	U (5)	Standard	UHC	0.028	28	wastewater treatment standard.
		2.0 (D036) or				
		UHC Treatment				1 mg/L detection limits exceed the
Nitrobenzene	U (1)	Standard	D036 or UHC	0.068	14	wastewater treatment standard.
2-Nitrophenol (o-		UHC Treatment				1 mg/L detection limits exceed the
nitrophenol)	U (1)	Standard	UHC	0.028	13	wastewater treatment standard.
4-Nitrophenol (p-		UHC Treatment	-			5 mg/L detection limits exceed the
nitrophenol)	U (5)	Standard	UHC	0.12	29	wastewater treatment standard.
N-nitroso-di-n-propylamine		UHC Treatment				1 mg/L detection limits exceed the
(Di-n-propylnitrosamine)	U (1)	Standard	UHC	0.4	14	wastewater treatment standard.
N-nitrosodiphenylamine		UHC Treatment				1 mg/L detection limits exceed the
(Diphenylnitrosamine)	U (1)	Standard	UHC	0.92	13	wastewater treatment standard.
		100 mg/L				
		(D037), UHC				
l -		Treatment				5 mg/L detection limits exceed the
Pentachlorophenol	U (5)	Standard	D037, UHC	0.089	7.4	wastewater treatment standard.
.		UHC Treatment				1 mg/L detection limits exceed the
Phenanthrene	U ₁ (1)	Standard	UHC	0.059	5.6	wastewater treatment standard.
] ,		UHC Treatment				1 mg/L detection limits exceed the
Phenol	U (1)	Standard	UHC	0.039	6.2	wastewater treatment standard.
D		UHC Treatment				0.063 mg/L concentration is below the
Pyrene	0.063 J	Standard	UHC	0.067	8.2	wastewater treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

Constituents	Concentration mg/L	Applicable Regulatory Limit	Applicable RCRA Waste Code	LDR Treatment Standard for wastewater in mg/l	LDR Treatment Standard for non- wastewater in mg/kg	Comments
		5.0 (D038) or				
		UHC Treatment				1 mg/L detection limits exceed the
Pyridine	U (1)	Standard	D038 or UHC	0.014	16	wastewater treatment standard.
		UHC Treatment				1 mg/L detection limits exceed the
1,2,4-Trichlorobenzene	U (1)	Standard	UHC	0.055	19	wastewater treatment standard.
		44 (D041), UHC				
		Treatment				5 mg/L detection limits exceed the
2,4,5-Trichorophenol	U (5)	Standard	D041, UHC	0.18	7.4	wastewater treatment standard.
		2 (D042), UHC	· ·			
		Treatment			5	1 mg/L detection limits exceed the
2,4,6-Trichlorophenol	U (1)	Standard	D042, UHC	0.035	7.4	wastewater treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

				l	LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	i i	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/L	Limit	Code	in mg/L	in mg/kg	Comments
Aluminum	U (0.2) J	NA	NA	NA	NA NA	
						This detected concentration was rejected.
		UHC Treatment			1.15 mg/L	Therefore, waste must be re-analyzed to
Antimony	0.218 R	Standard	UHC	1.9	TCLP	determine concentration.
		5.0 (D004), UHC				
		Treatment			5.0 mg/L	
Arsenic	U (0.0044)	Standard	D004, UHC	1.4	TCLP	
		100 mg/l (D005),				
		UHC Treatment			21 mg/L	
Barium	U (0.191) B J	Standard	D005, UHC	1.2	TCLP	
		UHC Treatment			1.22 mg/L	
Beryllium	U (0.0035) B J	Standard	UHC	0.82	TCLP	
Boron	7.28	NA	NA	NA	NA	
					0.11 mg/L	
Cadmium		1.0 (D006), UHC	D006, UHC	0.69	TCLP	
Calcium	51.4 J	NA	NA	NA	NA	
		5 (D007), UHC				
		Treatment			0.60 mg/L	
Chromium	U (0.01)	Standards	D007, UHC	2.77	TCLP	
Cobalt	U (0.03)	NA	NA	NA	NA	
Copper	U (0.009) B J	NA	NA	NA	NA	

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

B = Reported value is > to instrument detection limit but < contract required detection limit.

R = Result rejected.

W = Post digestion spike absorbance > than sample.

INEEL V-3 Liquid, Inorganic Analysis

	1	1		T	LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	non-	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	`
Constituents	mg/L	Limit	Code	in mg/L	in mg/kg	Comments
Iron	U (0.118) E	NA	NA	NA	NA	
		5.0 (D008), UHC				
	•	Treatment			0.75 mg/L	
Lead	0.0682 W	Standard	D008, UHC	0.69	TCLP	
Magnesium	17.9	NA	NA	NA	NA	
Manganese	0.765	NA	NA	NA	NA	
		0.2 (D009), UHC				
	1	Treatment			0.025 mg/L	
Mercury	U (0.001)	Standard	D009, UHC	0.15	TCLP	
		UHC Treatment			11 mg/L	
Nickel	0.185	Standard	UHC	3.98	TCLP	
Potassium	51.7	NA	NA	NA	NA	
					5.7 mg/L	
Selenium	U (0.005)	1 (D010)	D010	0.82	TCLP	
Silicon	7.46 J	NA	NA	NA	NA	
		5 (D011), UHC				
		Treatment		:	0.14 mg/L	
Silver	U (0.0024)	Standard	D011, UHC	0.43	TCLP	
Sodium	167	NA	NA	NA	NA	
		UHC Treatment	•		0.2 mg/L	
Thallium	U (0.004)	Standard	UHC	1.4	TCLP	
Tin	NA	NA	NA	NA	NA	
Vanadium	U (0.047) B J	NA	NA	NA	NA	
Zinc	0.964	NA	NA	NA	NA	

U = Not Detected (Detection limit in parenthesis).

W = Post digestion spike absorbance > than sample.

J = Estimated Value

B = Reported value is > to instrument detection limit but < contract required detection limit.

R = Result rejected.

INEEL V-3 Liquid, Miscellaneous Analysis

				T	LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	non-	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/L	Limit	Code	in mg/L	in mg/kg	Comments
Bromide	1.8	None	NA	NA	NA	
Chloride	76.2	None	NA	NA	NA	
Fluoride	U (5)	None	NA	NA	NA	
Nitrate	0.172	None	NA	NA	NA	
Nitrite	U (4)	None	NA	NA	NA	
Phosphate	2.51	None	NA	NA	NA	
Sulfate	15.7	None	NA	NA	NA	
						Wastewater is defined as < 1% TOC and < 1%
Total Organic Carbon	105	< 1%	NA	NA	NA	TSS.
Total Halides	183	NA	NA	NA	NA	
						Wastewater is defined as < 1% TOC and < 1%
Total Suspended Solids	65.3	<1%	NA	NA	NA	TSS.
Oil & Grease	4.29	None	NA	NA	NA	

U = Not Detected (Detection limit in parenthesis).

TOC = 105 mg/L = 1.05 E - 2 %, which is < 1%. TSS = 65.3 mg/L = 6.53 E-3% which is < 1%. Therefore, liquid phase is considered a wastewater.

INEEL V-3 Liquids, PCB Analysis

TSF-09, revision 1

					LDR	
				LDR	Treatment	
				Treatment	Treatment Standard for	
		Applicable	Applicable	Standard for	non-	
-	Concentration	Regulatory	TSCA/RCRA	wastewater	wastewater	
Constituents	mg/L	Limit	Waste Code	in mg/L	in mg/kg	Comments
Aroclor-1016	U (0.1)		None	NA	NA V	
Aroclor-1221	U (0.2)	ΑN	₹	ΑN	ΑN	
Aroclor-1232	U (0.1)	ΑN	₹	ΑN	ΑN	
Aroclor-1242	U (0.1)	ΑN	¥	ΝΑ	¥Z	
Aroclor-1248	U (0.1)	AN	¥	ΑN	Ϋ́	
Aroclor-1254	U (0.1)	ΑN	AN	ΑN	¥	
Aroclor-1260	U (0.1)	ΑN	AN	ΑN	ΑN	
		50 mg/kg for				
		TSCA, UHC				This waste is not regulated under TSCA and it
		Treatment				is below the UHC treatment standard level
		Standard for				Therefore, no PCB treatment is required prior
Total Concentration	U (0.1)	RCRA	None	0.1	10	to disposal.

U = Not Detected (Detection limit in parenthesis)

100 / 172

INEEL OU 1-10 Site TSF-09, Tank V-3 Preliminary Sludge Chemical Characterization Summary

- The sludge phase of the waste associated with this tank is considered a non-wastewater for purposes of complying with the Land Disposal Restrictions. This determination as well as the hazardous waste determination listed below is preliminary based on existing analytical data associated with this waste.
- Hazardous Waste Determination: Highest concentrations detected are reported.

The RCRA Waste codes that apply to this waste are as follows:

Constituent	Concentration Detected in Waste (mg/kg)	Regulatory Limit (mg/L)	Applicable Waste Code	LDR Treatment Standard for non- wastewater (mg/kg)
Beryllium	1.49 mg/L (theoretical)	1.22 mg/L	UHC	1.22 mg/L
Cadmium	0.198 mg/L (TCLP)	0.11 mg/L	UHC	0.11 mg/L
Chromium	0.601 mg/L (TCLP)	0.6 mg/L	UHC	0.6 mg/ L
Nickel	28.2 mg/L (theoretical)	11 mg/L	UHC	11 mg/L
Chloroethane	ND @ 10	6 mg/kg as UHC	UHC	6
2,4-Dinitrotoluene	ND @ 100 or 5.0mg/L (theoretical)	0.13	D030	140
Bis(2-ethyl hexyl) phthalate	9600E	28 mg/kg as a UHC	UHC	28
1,2- Dichlorobenzene	50 J	None if F- listed, or 6 mg/kg as a UHC	UHC	6
Hexachloroethane	ND @ 100 or 5.0 mg/L (theoretical)	3	D034	30
Pyridine	ND @ 100 or 5 mg/L (theoretical)	5	D038	16
Tetrachloroethene	480 (TCLP 8.658 mg/L, J D)	0.7 mg/L as a D039, None if F- listed, or 6 as a UHC	D039	6
Trichloroethene	36 D (TCLP 2.587 mg/L, J D)	0.5 mg/L as a D040, None if F- listed, or 6 as a UHC	F001	6
Vinyl chloride	ND @ 0.5 and 0.6 mg/kg	0.2	D043	6
Total PCB Concentration	400 D	50 mg/kg for TSCA and as a RCRA UHC	TSCA Regulated and RCRA UHC	< 50 for TSCA and10 for RCRA

• **UHC** = Underlying Hazardous Constituent.

D = Dilution factor of 1000, Dilution factor of 50 for TCLP analysis, and Dilution factor of 20 for PCB analysis.

J = Estimated Value.

E =This is the result from re-analysis at a dilution factor of 10.

ND = Not Detected

- The inorganic analysis performed on the sludge phase of this waste was reported in a total concentration (mg/kg) and in a TCLP extract concentration (mg/L). Although high total concentrations are reported in this waste, the TCLP extract concentrations were below the regulatory limits as a characteristic waste. For the other inorganic analyses identified as UHCs, only total concentrations are reported. Therefore, to evaluate the regulatory status of these constituents in this solid, the total constituent concentration is divided by 20, creating the maximum theoretical leachate concentration (as referenced in the table above), which is then compared to the applicable regulatory limit. The division factor reflects the 20-to-1 ratio of extraction fluid to solid used in the TCLP test method.
- Chloroethane reported a detection limit of 10 mg/kg, however the non-wastewater treatment standard is 6 mg/kg. LDR guidance suggests that in cases where detection limits are above either the characteristic limit or treatment standards, the generator may use his knowledge of the waste, in lieu of analytical results, to certify that the constituent(s) are not present in the waste. However, since this waste will not be re-analyzed for Chloroethane, this constituent is assumed to be present in the waste at the detection limit value.

Vinyl chloride was not detected in the sludge at 0.6 mg/kg and at 0.5 mg/L based on TCLP analysis. The characteristic limit for vinyl chloride is 0.2 mg/L. The TCLP detection limit exceeds this characteristic limit, therefore it is uncertain if this waste exceeds the toxicity characteristic based on TCLP analysis. However, the treatment standard for vinyl chloride, either as a toxicity characteristic or as an underlying hazardous constituent (UHC), is 6 mg/kg and vinyl chloride was not detected at 0.6 mg/kg. Based on this information this waste is assumed to contain vinyl chloride at the detection limit value and is considered characteristic however, no treatment for purposes of complying with the Land Disposal Restrictions (LDRs) would be required. As previously stated, LDR guidance suggests that in cases where detection limits are above either the characteristic limit or treatment standards, the generator may use his knowledge of the waste, in lieu of analytical results, to certify that this constituent is not present in the waste.

• The detection limits for a majority of the SVOCs were above the non-wastewater treatment standards, as well as the characteristic limits for several constituents. Again as previously stated, LDR guidance suggests that in cases where detection limits are above either the characteristic limit or treatment standards, the generator may use his knowledge of the waste, in lieu of analytical results, to certify that these constituents are not present in the waste. However, since this waste will not be re-analyzed for

103 / 172

these constituents, the following SVOCs are also assumed to be present in the waste at the detection limit value (see attached tables for concentrations) and are identified as underlying hazardous constituents (The above table identifies those SVOCs with detection limits exceeding the characteristic limits.): Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,I)perylene, Benzo(k)fluoranthene, Butylbenzylphthalate, Bis (2chloroethoxy) methane, Bis (2-chloroethyl) ether, Bis (2-chloroisopropyl) ether, 4-Bromophenyl-phenylether, Chrysene, 4-Chloroaniline, 4-Chloro-3-Methylphenol, 2-Chloronaphthalene, 2-Chlorophenol, Dibenz(a,h)anthracene, 1,3-Dichlorobenzene. 1,4-Dichlorobenzene, 3,3-Dichlorobenzidine, 2,4-Dichlorophenol, Diethylphthalate. 2,4-Dimethylphthalate, Di-n-butylphthalate, Di-n-octylphthalate, 2,4-Dinitrophenol, 2,6-Dinitrotoluene, Fluoranthene, Fluorene, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Indeno(1,2,3-cd)pyrene, 2-Methylphenol, 4-Methylphenol, Napthalene, 2-Nitroaniline, 4-Nitroaniline, Nitrobenzene, 2-Nitrophenol, 4-Nitrophenol, N-nitroso-dimethylamine, N-nitroso-din-propylamine, N-nitrosodiphenylamine, Pentachlorophenol, Phenanthrene, Phenol, Pyrene, 1,2,4-Trichlorobenzene, 2,4,5-Trichlorophenol, and.

• Based on a review of the analytical data provided by INEEL, this waste is considered both characteristic and a listed hazardous waste as well as TSCA regulated due to the presence of PCBs > 50 ppm. This waste requires incineration based on 40 CFR 761 for the presence of PCBs and any form of thermal treatment for the presence of the organic constituents, followed-by stabilization of the ash for the inorganic constituents.

Recommendation:

The physical form or phase of the waste to be treated and/or disposed should be the same form or phasedescribed above.

Since this waste will require some form of thermal treatment due to the presence of organics, the waste acceptance criteria of possible treatment facilities should also be considered.

INEEL V-3 Sludge, VOC Analysis

		<u> </u>		1	LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for		•
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/kg	Limit	Code	in mg/L	in mg/kg	Comments
- Constituents	mg/kg	Treatment	Oode	m mg/L	in ing/kg	Comments
1		standard limit if				
Acetone	U (0.6) J	UHC	UHC	0.28	160	
7.100.0110	0 (0.0) 0	0.5 mg/l (D018)	0110	0.20	100	
	U (0.6) J	or treatment				
	U (0.5) J D,	standard limit if			:	
Benzene	TCLP	UHC	D018 or UHC	0.14	10	
		Treatment	2010 01 0110	0.11		
		standard limit if				
Bromodichloromethane	U (0.6) J	UHC	UHC	0.35	15	
		Treatment				
Bromoform		standard limit if				
(Tribromomethane)	U (0.6) J	UHC	UHC	0.63	15	
		Treatment				
		standard limit if				
Bromomethane	U (0.6) J	UHC	UHC	0.11	15	
		200 mg/l (D035)				
	U (0.6) J	or treatment				
	U (0.5) J D,	standard limit if				
2-Butanone (MEK)	TCLP	UHC	D035 or UHC	0.28	36	
		Treatment				
0 1 11 15 1	(0.0)	standard limit if				
Carbon disulfide	U (0.6) J	UHC	UHC	3.8	4.8 mg/L	

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

D = Dilution factor of 50 for TCLP analysis and 1000 for total analysis.

B = Blank contamination

INEEL V-3 Sludge, VOC Analysis

	T				LDR	
	,			LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for		
	Concentration		Applicable	1	ł	
C	i i	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/kg	Limit	Code	in mg/L	in mg/kg	Comments
		0.5 mg/L (D019)				
	U (0.6) J	or treatment				
	U (0.5) J D,	standard limit if				
Combon totrooblevide			D040 11110	0.057		
Carbon tetrachloride	TCLP	UHC	D019 or UHC	0.057	6	
		100 ma/l (D024)				
	11/0.6\1	100 mg/l (D021)				
	U (0.6) J	or treatment				
	U (0.5) J D,	standard limit if	5004 11110			
Chlorobenzene	TCLP	UHC	D021 or UHC	0.057	6	
		Treatment				
		standard limit if			_	The 10 mg/kg detection limit exceeds the nww
Chloroethane	U (10)	UHC	UHC	0.27	6	treatment standard.
		6 mg/l (D022) or				
	U (0.6) J	treatment				
	U (0.5) J D,	standard limit if				
Chloroform	TCLP	UHC	D022 or UHC	0.046	6	
		Treatment				
1		standard limit if				
Chloromethane	U (0.6) J	UHC	UHC	0.19	30	
		Treatment				
Dibromochloromethane		standard limit if				
(Chlorodibromomethane)	U (0.6) J	UHC	UHC	0.057	15	
	Ì	Treatment				
		standard limit if				
1,1-Dichloroethane	U (0.6) J	UHC	UHC	0.059	6	

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

D = Dilution factor of 50 for TCLP analysis and 1000 for total analysis.

B = Blank contamination

INEEL V-3 Sludge, VOC Analysis

TSF-0s, , evision 1

Comments								
LDR Treatment Standard for non- wastewater in mg/kg	ဖ	9	30	18	18	18	10	NA
LDR Treatment Standard for wastewater in mg/L	0.21	0.025	0.054	0.85	0.036	0.036	0.057	ΑN
Applicable RCRA Waste Code	D028 or UHC	D029 or UHC	OHC	OHC	OHC	UHC	UHC	Ϋ́
Applicable Regulatory Limit	0.5 mg/l (D028), or treatment standard limit if UHC	0.7 mg/l (D029) or treatment standard limit if UHC	Treatment standard limit if UHC	A A				
Concentration mg/kg	U (0.6) J U (0.5) J D, TCLP	U (0.6) J U (0.5) J D, TCLP	U (0.6) J					
Constituents	1,2-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethene (total)	1,2-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3- Dichloropropene	Ethylbenzene	2-Hexanone (Methyl n- butyl ketone)

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value
D = Dilution factor of 50 for TCLP analysis and 1000 for total analysis.
B = Blank contamination

INEEL V-3 Sludge, VOC Analysis

	<u> </u>	T		T	LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	i		
	0		• •	Standard for		
0	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	_
Constituents	mg/kg	Limit	Code	in mg/L	in mg/kg	Comments
4 Mathad O a satanasa		Treatment				
4-Methyl-2-pentanone		standard limit if				
(MIK)	U (0.6) J	UHC	UHC	0.14	33	
		Treatment				
		standard limit if				
Methylene chloride	2.7 J B D	UHC	UHC	0.089	30	
Styrene	U (0.6) J	NA	NA	NA	NA	
		Treatment				
1,1,2,2-		standard limit if				
Tetrachloroethane	U (0.6) J	UHC	UHC	0.057	6	
						8.6 mg/L is above the characteristic limit,
		0.7 mg/l (D039)				and the 480 mg/kg concentration exceeds
	480 8.658					the nww treatment standard. Therefore, it
	mg/L J D,	standard limit if				may be either D039, F-listed or a UHC,
Tetrachloroethene	TCLP	UHC	D039 or UHC	0.056	6	requiring treatment.
		Treatment				
		standard limit if				
Toluene	U (0.6) J	UHC	UHC	0.08	10	
		Treatment				
		standard limit if				
1,1,1-Trichloroethane	U (0.6) J	UHC	UHC	0.054	6	
	:	Treatment				
		standard limit if				
1,1,2-Trichloroethane	U (0.6) J	UHC	UHC	0.054	6	

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

D = Dilution factor of 50 for TCLP analysis and 1000 for total analysis.

B = Blank contamination

107 \$ 172

INEEL V-3 Sludge, VOC Analysis

					LDR	-
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	non-	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/kg	Limit	Code	in mg/L	in mg/kg	Comments
						2.5 mg/L exceeds the characteristic limit,
						and the total concentration is above the
	36 D					non-wastewater treatment standard.
	2.587 mg/L J					Therefore it may be D040, F002 or UHC,
Trichloroethene	D, TCLP	None if listed	F001	0.054	6	requiring treatment.
						0.5 mg/L detection limit for TCLP exceeds the characteristic limit of 0.2 mg/L.
		0.2 mg/l (D043),				However, the 0.6 mg/kg detection limit is
	U (0.6) J	orTreatment				below the treatment standard. Therefore,
	U (0.5) J D,	standard limit if				no treatment would be required regardless
Vinyl chloride	TCLP	UHC	D043 or UHC	0.27	6	if it is a D043 or a UHC.
Xylene (ortho)	U (0.6) J	NA	NA	NA	NA	·
		Treatment				
Xylene (total meta and	1	standard limit if		1		
para)	U (0.6) J	UHC	UHC	0.32	30	

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

D = Dilution factor of 50 for TCLP analysis and 1000 for total analysis.

B = Blank contamination

INEEL V-3 Sludge, SVOC analysis.

					LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	non-	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/kg	Limit	Code	in mg/l	in mg/kg	Comments
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Acenaphthene	U (100)	Standard	UHC	0.059	3.4	treatment standard.
		UHC Treatment			3	100 mg/kg detection limit exceeds the nww
Acenaphthylene	U (100)	Standard	UHC	0.059	3.4	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Anthracene	U (100)	Standard	UHC	0.059	3.4	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Benzo (a) anthracene	U (100)	Standard	UHC	0.059	3.4	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Benzo (a) pyrene	U (100)	Standard	UHC	0.061	3.4	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Benzo (b) fluoranthene	U (100)	Standard	UHC	0.11	6.8	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Benzo (g,h,l) perylene	U (100)	Standard	UHC	0.0055	1.8	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Benzo (k) fluoranthene	U (100)	Standard	UHC	0.11	6.8	treatment standard.
Benzoic acid	U (500)	None	NA	NA	NA	
Benzyl alcohol	U (100)	None	NA	NA	NA	
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Butylbenzylphthalate	U (100)	Standard	· UHC	0.017	28	treatment standard.
Bis (2-		UHC Treatment				100 mg/kg detection limit exceeds the nww
chloroethoxy)methane	U (100)	Standard	UHC	0.036	7.2	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Bis (2-chloroethyl)ether	U (100)	Standard	UHC	0.033	6	treatment standard.
	· · · · · · · · · · · · · · · · · · ·	UHC Treatment				100 mg/kg detection limit exceeds the nww
Bis (2-chloroisopropyl) ether	U (100)	Standard	UHC	0.055	7.2	treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

E = This is a result from re-analysis at a dilution factor of 10.

INEEL V-3 Sludge, SVOC analysis.

				<u> </u>	LDR	
	·			LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for		•
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents						0
Constituents	mg/kg	Limit	Code	in mg/l	in mg/kg	Comments 9600 mg/kg concentration exceeds the
Ric (2-othylboxyd)		UHC Treatment				
Bis (2-ethylhexyl)	0000 5	1				nww treatment standard. Therefore this
phthalate	9600 E	Standard	UHC	0.28	28	constituent is a UHC.
1.5	11 (400)	UHC Treatment				100 mg/kg detection limit exceeds the nww
4-Bromophenyl-phenylether		Standard	UHC	0.055	15	treatment standard.
Carbozole (or Carbazole)	U (100)	None	NA	NA	NA	
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Chrysene	U (100)	Standard	UHC	0.059	3.4	treatment standard.
4-Chloroaniline (p-	-	UHC Treatment				100 mg/kg detection limit exceeds the nww
chloroaniline)	U (100)	Standard	UHC	0.46	16	treatment standard.
4-Chloro-3-Methylphenol (p-		UHC Treatment				100 mg/kg detection limit exceeds the nww
chloro-m-cresol)	U (100)	Standard	UHC	0.018	14	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
2-Chloronaphthalene	U (100)	Standard	UHC	0.055	5.6	treatment standard.
4-Chlorophenyl-phenylether	U (100)	None	NA	NA	NA	
		UHC Treatment				100 mg/kg detection limit exceeds the nww
2-Chlorophenol	U (100)	Standard	UHC	0.044	5.7	treatment standard.
	<u> </u>	UHC Treatment				100 mg/kg detection limit exceeds the nww
Dibenz(a,h)anthracene	U (100)	Standard	UHC	0.055	8.2	treatment standard.
Dibenzofuran	U (100)	None	NA	NA	NA	
						50 mg/kg concentration exceeds the nww
						treatment standard. Therefore this
1,2-Dichlorobenzene (o-		UHC Treatment				constituent is a UHC or an F-listed
dichlorobenzene)	50 J	Standard	UHC	0.088	6	constituent.
1,3-Dichlorobenzene (m-		UHC Treatment				100 mg/kg detection limit exceeds the nww
dichlorobenzene)	U (100)	Standard	UHC	0.036	6	treatment standard.
dictioroperizerie)	11 0 (100)	Otaridara	<u> </u>	0.000		u calment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

E = This is a result from re-analysis at a dilution factor of 10.

INEEL V-3 Sludge, SVOC analysis.

	T			I	LDR	
				LDR	Treatment	•
				l ————————————————————————————————————	Standard for	
	-	Applicable	Applicable	Standard for		
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/kg	Limit	Code	in mg/l		Comments
Constituents	ilig/kg	7.5 (D027), UHC		iii iiig/i	in mg/kg	Comments
1,4-Dichlorobenzene (p-		Treatment				100 mg/kg datastian limit avecade the num
dichlorobenzene)	U (100)	Standard	D027, UHC	0.09	6	100 mg/kg detection limit exceeds the nww treatment standard.
3,3-Dichlorobenzidine	0 (100)	UHC Treatment	D027, UTC	0.09	0	
•	11 (400)		11110	0.055	00	100 mg/kg detection limit exceeds the nww
(Dibenz (a,h) anthracene)	U (100)	Standard	UHC	0.055	8.2	treatment standard.
0.4 Diablesonberral	11 (400)	UHC Treatment		0.044	4.4	100 mg/kg detection limit exceeds the nww
2,4-Dichlorophenol	U (100)	Standard	UHC	0.044	14	treatment standard.
		UHC Treatment		1		100 mg/kg detection limit exceeds the nww
Diethylphthalate	U (100)	Standard	UHC	0.2	28	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
2,4-Dimethylphenol	U (100)	Standard	UHC	0.036	14	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Dimethylphthalate	U (100)	Standard	UHC	0.047	28	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Di-n-butylphthalate	U (100)	Standard	UHC	0.057	28	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Di-n-octylphthalate	U (100)	Standard	UHC	0.017	28	treatment standard.
4,6-Dinitro-2-methylphenol	U (500)	None	NA	NA	NA	
		UHC Treatment				500 mg/kg detection limit exceeds the nww
2,4-Dinitrophenol	U (500)	Standard	UHC	0.12	160	treatment standard.
						100 mg/kg detection limit exceeds the nww
						treatment standard. Using 100 mg/kg, the
		0.13 mg/L				theoretical leachate value is 5.0 mg/L which
		(D030), UHC				exceeds the characteristic limit. Therefore,
		Treatment				this may be a characteristic constituent or a
2,4-Dinitrotoluene	U (100)	Standard	D030, UHC	0.32	140	UHC.
_,		- Claridai a	2000, 0110	0.02	ידי ו	5110.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

E = This is a result from re-analysis at a dilution factor of 10.

INEEL V-3 Sludge, SVOC analysis.

					LDR	
			·	LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for	non-	
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/kg	Limit	Code	in mg/l	in mg/kg	Comments
		UHC Treatment				100 mg/kg detection limit exceeds the nww
2,6-Dinitrotoluene	U (100)	Standard	UHC	0.55	28	treatment standard.
1		UHC Treatment				100 mg/kg detection limit exceeds the nww
Fluoranthene	U (100)	Standard	UHC	0.068	3.4	treatment standard.
Ì		UHC Treatment	4			100 mg/kg detection limit exceeds the nww
Fluorene	U (100)	Standard	UHC	0.059	3.4	treatment standard.
		0.13 (D032), UHC Treatment				100 mg/kg detection limit exceeds the nww
Hexachlorobenzene	U (100)	Standard	D032, UHC	0.055	10	treatment standard.
Tiexacilioroberizerie	0 (100)	0.5 (D033)UHC	D032, 0110	0.000	10	ti catiliciti stalidard.
Hexachlorobutadiene		Treatment				100 mg/kg detection limit exceeds the nww
(Hexachloro-1,3-butadiene	U (100)	Standard	D033, UHC	0.055	5.6	treatment standard.
(Floradillere 1,6 baladierie	0 (100)	UHC Treatment	2000, 01.0	0.000	0.0	100 mg/kg detection limit exceeds the nww
Hexachlorocyclopentadiene	U (100)	Standard	UHC	0.057	2.4	treatment standard.
, renderile esperidencies	<u> </u>			0.007		100 mg/kg detection limit exceeds the nww
						treatment standard. Using 100 mg/kg, the
						theoretical leachate value is 5.0 mg/L which
		3.0 mg/L (D034),				exceeds the characteristic limit. Therefore,
		UHC Treatment				this may be a characteristic constituent or a
Hexachloroethane	U (100)	Standard	D034, UHC	0.055	30	UHC.
	, ,	UHC Treatment	•			100 mg/kg detection limit exceeds the nww
Indeno (1,2,3-cd) pyrene	U (100)	Standard	UHC	0.0055	3.4	treatment standard.
Isophorone	U (100)	None	NA	NA	NA	
2-Methylnaphthalene	32 J	None	NA	NA	NA	
		200 mg/L or				
		UHC treatment				100 mg/kg detection limit exceeds the nww
2-Methylphenol (o-cresol)	U (100)	standard	D023, UHC	0.11	5.6	treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

E = This is a result from re-analysis at a dilution factor of 10.

112 0/172

INEEL V-3 Sludge, SVOC analysis.

				LDR	
			LDR	Treatment	
	Annlicable	Annlicable		1	
Concentration					
					0
nig/kg		Code	in ing/i	in mg/kg	Comments
					400 // 14 // 17 // 18
11 (400)		D005 11110			100 mg/kg detection limit exceeds the nww
U (100)	0 -0 0 0.	D025, UHC	0.7.7	5.6	treatment standard.
					100 mg/kg detection limit exceeds the nww
U (100)		UHC	0.059	5.6	treatment standard.
	UHC Treatment				500 mg/kg detection limit exceeds the nww
U (500)	Standard	UHC	0.27	14	treatment standard.
U (500)	None	NA	NA	NA	
	UHC Treatment				500 mg/kg detection limit exceeds the nww
U (500)	Standard	UHC	0.028	28	treatment standard.
	2.0 (D036) or				
	UHC Treatment				100 mg/kg detection limit exceeds the nww
U (100)	Standard	D036 or UHC	0.068	14	treatment standard.
	UHC Treatment				100 mg/kg detection limit exceeds the nww
U (100)	Standard	UHC	0.028	13	treatment standard.
	UHC Treatment				870 mg/kg detection limit exceeds the nww
U (500)	Standard	UHC	0.12	29	treatment standard.
, , ,	UHC Treatment				100 mg/kg detection limit exceeds the nww
U (100)	Standard	UHC	0.4	14	treatment standard.
	UHC Treatment				100 mg/kg detection limit exceeds the nww
U (100)	Standard	UHC	0.92	13	treatment standard.
	U (500) U (100) U (500) U (100)	mg/kg Limit 200 mg/L or UHC treatment standard UHC Treatment U (100) Standard UHC Treatment Standard UHC Treatment U (500) None UHC Treatment U (500) Standard 2.0 (D036) or UHC Treatment U (100) Standard UHC Treatment	Concentration mg/kg Regulatory Limit RCRA Waste Code 200 mg/L or UHC treatment standard D025, UHC U (100) UHC Treatment Standard UHC U (500) UHC Treatment Standard UHC U (500) None NA U (500) None NA U (500) Standard UHC U (500) Standard UHC U (100) Standard D036 or UHC U (100) Standard UHC U (500) Standard UHC U (500) Standard UHC U (500) Standard UHC U (500) Standard UHC U (100) Standard UHC	Concentration mg/kg Regulatory Limit RCRA Waste Code wastewater in mg/l 200 mg/L or UHC treatment U(100) 200 mg/L or UHC treatment Standard D025, UHC D0.77 U (100) Standard UHC D0.059 U (500) None UHC D0.27 U (500) None NA	Applicable Regulatory Code Concentration mg/kg Limit Code Co

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

E = This is a result from re-analysis at a dilution factor of 10.

INEEL V-3 Sludge, SVOC analysis.

				T	LDR	
				LDR	Treatment	
				Treatment	Standard for	
		Applicable	Applicable	Standard for		
	Concentration	Regulatory	RCRA Waste	wastewater	wastewater	
Constituents	mg/kg	Limit	Code	in mg/l	in mg/kg	Comments
Constituting	mg/kg	Lillit	Code	iii iiig/i	iii iiig/kg	500 mg/kg detection limit exceeds the nww
						treatment standard. Using 500 mg/kg, the
		100 mg/L				,
		(D037), UHC				theoretical leachate value is 25.0 mg/L
						which exceeds the characteristic limit.
Dentechlorenhonel	11 (500)	Treatment	D007 11110			Therefore, this may be a characteristic
Pentachlorophenol	U (500)	Standard	D037, UHC	0.089	7.4	constituent or a UHC.
5 1 4		UHC Treatment				100 mg/kg detection limit exceeds the nww
Phenanthrene	U (100)	Standard	UHC	0.059	5.6	treatment standard.
		UHC Treatment			:	100 mg/kg detection limit exceeds the nww
Phenol	U (100)	Standard	UHC	0.039	6.2	treatment standard.
		UHC Treatment				100 mg/kg detection limit exceeds the nww
Pyrene	U (100)	Standard	UHC	0.067	8.2	treatment standard.
						100 mg/kg detection limit exceeds the nww
						treatment standard. Using 100 mg/kg, the
				ĺ		theoretical leachate value is 5.0 mg/L which
		5.0 (D038) or				at the characteristic limit. Therefore, this
		UHC Treatment				may or may not be a characteristic
Pyridine	U (100)	Standard	D038 or UHC	0.014	16	constituent or a UHC.
Tributylphosphate	NA	None	NA	NA	NA	
		UHC Treatment				100 mg/kg detection limit exceeds the nww
1,2,4-Trichlorobenzene	U (100)	Standard	UHC	0.055	19	treatment standard.
		44 (D041), UHC				a out north ordinadio.
		Treatment				500 mg/kg detection limit exceeds the nww
2,4,5-Trichorophenol	U (500)	Standard	D041, UHC	0.18	7.4	treatment standard.
_, .,	- (000)	2 (D042), UHC	2011, 0110	0.10	7.7	deathent standard.
		Treatment				100 mg/kg detection limit exceeds the nww
2,4,6-Trichlorophenol	U (100)	Standard	D042, UHC	0.035	7.4	
2,4,0-Therioropherior		Stariuaru	DU42, UNC	0.035	1.4	treatment standard.

U = Not Detected (Detection limit in parenthesis).

J = Estimated Value

E = This is a result from re-analysis at a dilution factor of 10.